Qianqian Jin, Ph.D.
English 中文

欢迎来到 Welcome to 金钱钱的网站 Qianqian Jin's Web

车辆与交通工程专家,专注于利用大规模数据和机器学习分析并解决复杂交通问题 Expert in vehicle and transportation engineering, specializing in leveraging large-scale data and Machine Learning (including Deep Learning and Transformer-based Models) to analyze and solve complex transportation problems.

关于我 About Me

我的研究方向是车辆与交通工程,正在积极寻求新的机会。我热衷于推动AI与安全工程交叉领域的创新。 Expert in vehicle and transportation engineering, actively seeking new opportunities. I am passionate about driving innovation at the intersection of AI and safety engineering.

使用大语言模型构建AI演示以支持交通安全分析: Built AI demos using large language models to support traffic safety analysis: I. 部署本地LLM(基于Ollama)与API集成,构建用于碰撞报告分析的定制化AI应用,注重数据隐私。1. Deployed local LLMs (Ollama-based) with API integration to build customized AI applications for crash report analysis, with a focus on data privacy.

进行研发项目以使用先进模型测量和分类风险级别: Conduct Research & Development projects to measure and classify risk levels using advanced models: II. 领导设计使用基于Transformer模型的冲突风险评估框架,理解复杂交互信息;2. Led the design of a conflict risk assessment framework using Transformer-based models to understand complex interaction information; III. 开发用于冲突风险分类的全栈深度学习流程,为实时安全应用提供91%的准确率。3. Developed a full-stack deep learning pipeline for conflict risk classifications, delivering 91% accuracy for real-time safety applications.

领导跨职能团队开发自动驾驶预碰撞场景和决策制定: Led a cross-function team to develop AV pre-crash scenarios and decision-making: IV. 设计K-medoids聚类流程从自然驾驶数据集中提取高风险预碰撞场景,改善自动驾驶安全验证的场景多样性;4. Designed K-medoids clustering pipelines to extract high-risk pre-crash scenarios from naturalistic driving datasets, improving scenario diversity for AV safety validation; V. 领导团队努力开发马尔可夫模型,用于交叉口级别碰撞可能性的概率预测,实现主动的自动驾驶安全决策制定。5. Led team efforts to develop Markov Models for probabilistic forecasting of intersection-level collision likelihood for proactive AV safety decision-making.

大语言模型 Large Language Model 深度学习 Deep Learning 研发项目 R&D Project 跨职能团队 Cross-function Team
Qianqian Jin

技能与专长 Skills & Expertise

我在以下领域拥有丰富的经验和专业知识 I have extensive experience and expertise in the following areas

编程语言 Programming Languages

  • Python - 数据分析和机器学习 Data Analysis & Machine Learning
  • R - 统计建模和数据分析 Statistical Modeling & Data Analysis
  • SQL - 数据库管理和查询 Database Management & Queries

模型框架与库 Model Framework and Library

  • PyTorch - 深度学习模型开发 Deep Learning Model Development
  • Scikit-learn - 机器学习算法 Machine Learning Algorithms
  • 统计模型和深度学习模型 Statistical Models & Deep Learning Models

研究专长 Research Expertise

  • 大规模交通数据分析 Large-scale Traffic Data Analysis
  • 机器学习在交通领域的应用 Machine Learning Applications in Transportation
  • 自动驾驶场景验证 Autonomous driving scenarios validation

工程能力 Engineering Ability

  • CATIA - 3D建模和设计 3D Modeling & Design
  • AutoCAD - 工程设计 Engineering Design
  • MATLAB/Simulink - 数值计算和仿真 Numerical Computing & Simulation

演示 Demo

以下是我的一些项目演示,展示了实际应用中的技术实现和效果 Below are some of my project demonstrations, showcasing technical implementations and results in practical applications

实时冲突检测演示 Real-time Conflict Detection Demo

基于深度学习的实时交通冲突检测系统演示 Demonstration of real-time traffic conflict detection system based on deep learning

观看演示 Watch Demo

场景理解演示 Scene Understanding Demo

基于transformer的场景理解和风险评估演示 Demonstration of scene understanding and risk assessment based on transformer

研究项目 Research Projects

以下是我在车辆与交通工程领域的主要研究项目,展示了我在大规模数据分析和机器学习应用方面的专业能力 Below are my main research projects in vehicle and transportation engineering, demonstrating my professional capabilities in large-scale data analysis and Machine Learning applications

学术研究路线图 Academic Research Roadmap

我在车辆与交通工程领域的研究发展历程,专注于大规模数据和机器学习应用 My research development in vehicle and transportation engineering, focusing on large-scale data and Machine Learning applications

研究路线图

基于transformer-based model的场景理解 Scene Understanding Based on transformer-based model

开发了一个冲突风险评估框架,专注于车辆与弱势道路使用者(VRU)之间的右转交互。 Developed a conflict risk assessment framework focusing on right-turn interactions between vehicles and vulnerable road users (VRUs).

该方法集成了transformer-based model与区域级描述,共同理解视觉场景并分类冲突风险级别。 This approach integrates the transformer-based model with region-level captioning to jointly understand visual scenes and classify conflict risk levels.

transformer-based model transformer-based model 冲突风险评估 Conflict Risk Assessment 实时分析 Real-time Analysis

状态:审核中 Status: Under review

视觉语言模型项目

基于深度学习的实时交通冲突检测 Real-time Traffic Conflict Detection Using Deep Learning

本研究探讨了右转交通国家信号交叉口右转时的行人-车辆冲突 This study explores pedestrian-vehicle conflicts during right turns at signalized intersections in right-hand traffic countries.

通过结合268份碰撞报告275个冲突案例,研究强调分析冲突相关因素如何作为碰撞前指标。 By combining 268 crash reports and 275 conflict cases, the study emphasizes how analyzing conflict-related factors can serve as pre-crash indicators.

深度学习 Deep Learning 冲突检测 Conflict Detection PET/RTTC

状态:审核中 Status: Under review

行人车辆冲突研究

互联交叉口冲突可能性评估 Assessing Conflict Likelihood at Interconnected Intersections

查看论文 → View Paper →

本研究调查了信号交叉口附近对无信号交叉口交通冲突的影响。我们利用从CitySim无人机数据集提取的微观高分辨率轨迹数据集 This study investigates how proximity to signalized intersections affects traffic conflicts at unsignalized intersections. We utilized microscopic high-resolution trajectory dataset extracted from the CitySim drone dataset.

无人机数据 Drone Data 结构方程模型 Structural Equation Model 互联交叉口 Interconnected Intersections

已发表:AAP期刊 Published: AAP Journal

互联交叉口研究

基于无人机视频的实时冲突检测 Real-time Conflict Detection Based on Drone Videos

查看代码 → View Code →

由于高效率要求,实时大规模冲突估计仍然是一个挑战。我们提出了一种利用深度学习模型进行实时冲突检测的新方法。 Real-time large-scale conflict estimation is still a challenge due to high efficiency requirements. We propose a novel approach leveraging deep learning models for real-time conflict detection.

ResNet-101 91% Accuracy 实时检测 Real-time Detection

状态:审核中 Status: Under review

实时冲突检测

不同天气条件下的冲突阈值差异 Threshold Discrepancy of Conflicts Under Different Weather Conditions

查看论文 → View Paper →

本研究基于无人机轨迹数据集,调查了晴天和轻雨天气条件下不同替代安全措施的具体阈值。 This study investigates specific thresholds for different surrogate safety measures under clear and light rainy weather conditions based on drone trajectory dataset.

天气影响 Weather Impact MTTC/DRAC 安全阈值 Safety Thresholds

已发表:TRR期刊 Published: TRR Journal

天气条件研究

联系我 Contact Me

如果您有任何问题或机会,请随时与我联系。 Any questions or job opportunities, please feel free to contact me.