车辆与交通工程专家,专注于利用大规模数据和机器学习分析并解决复杂交通问题 Expert in vehicle and transportation engineering, specializing in leveraging large-scale data and Machine Learning (including Deep Learning and Transformer-based Models) to analyze and solve complex transportation problems.
我的研究方向是车辆与交通工程,正在积极寻求新的机会。我热衷于推动AI与安全工程交叉领域的创新。 Expert in vehicle and transportation engineering, actively seeking new opportunities. I am passionate about driving innovation at the intersection of AI and safety engineering.
使用大语言模型构建AI演示以支持交通安全分析: Built AI demos using large language models to support traffic safety analysis: I. 部署本地LLM(基于Ollama)与API集成,构建用于碰撞报告分析的定制化AI应用,注重数据隐私。1. Deployed local LLMs (Ollama-based) with API integration to build customized AI applications for crash report analysis, with a focus on data privacy.
进行研发项目以使用先进模型测量和分类风险级别: Conduct Research & Development projects to measure and classify risk levels using advanced models: II. 领导设计使用基于Transformer模型的冲突风险评估框架,理解复杂交互信息;2. Led the design of a conflict risk assessment framework using Transformer-based models to understand complex interaction information; III. 开发用于冲突风险分类的全栈深度学习流程,为实时安全应用提供91%的准确率。3. Developed a full-stack deep learning pipeline for conflict risk classifications, delivering 91% accuracy for real-time safety applications.
领导跨职能团队开发自动驾驶预碰撞场景和决策制定: Led a cross-function team to develop AV pre-crash scenarios and decision-making: IV. 设计K-medoids聚类流程从自然驾驶数据集中提取高风险预碰撞场景,改善自动驾驶安全验证的场景多样性;4. Designed K-medoids clustering pipelines to extract high-risk pre-crash scenarios from naturalistic driving datasets, improving scenario diversity for AV safety validation; V. 领导团队努力开发马尔可夫模型,用于交叉口级别碰撞可能性的概率预测,实现主动的自动驾驶安全决策制定。5. Led team efforts to develop Markov Models for probabilistic forecasting of intersection-level collision likelihood for proactive AV safety decision-making.
我在以下领域拥有丰富的经验和专业知识 I have extensive experience and expertise in the following areas
以下是我的一些项目演示,展示了实际应用中的技术实现和效果 Below are some of my project demonstrations, showcasing technical implementations and results in practical applications
基于深度学习的实时交通冲突检测系统演示 Demonstration of real-time traffic conflict detection system based on deep learning
基于transformer的场景理解和风险评估演示 Demonstration of scene understanding and risk assessment based on transformer
以下是我在车辆与交通工程领域的主要研究项目,展示了我在大规模数据分析和机器学习应用方面的专业能力 Below are my main research projects in vehicle and transportation engineering, demonstrating my professional capabilities in large-scale data analysis and Machine Learning applications
我在车辆与交通工程领域的研究发展历程,专注于大规模数据和机器学习应用 My research development in vehicle and transportation engineering, focusing on large-scale data and Machine Learning applications
开发了一个冲突风险评估框架,专注于车辆与弱势道路使用者(VRU)之间的右转交互。 Developed a conflict risk assessment framework focusing on right-turn interactions between vehicles and vulnerable road users (VRUs).
该方法集成了transformer-based model与区域级描述,共同理解视觉场景并分类冲突风险级别。 This approach integrates the transformer-based model with region-level captioning to jointly understand visual scenes and classify conflict risk levels.
状态:审核中 Status: Under review
本研究探讨了右转交通国家信号交叉口右转时的行人-车辆冲突。 This study explores pedestrian-vehicle conflicts during right turns at signalized intersections in right-hand traffic countries.
通过结合268份碰撞报告和275个冲突案例,研究强调分析冲突相关因素如何作为碰撞前指标。 By combining 268 crash reports and 275 conflict cases, the study emphasizes how analyzing conflict-related factors can serve as pre-crash indicators.
状态:审核中 Status: Under review
本研究调查了信号交叉口附近对无信号交叉口交通冲突的影响。我们利用从CitySim无人机数据集提取的微观高分辨率轨迹数据集。 This study investigates how proximity to signalized intersections affects traffic conflicts at unsignalized intersections. We utilized microscopic high-resolution trajectory dataset extracted from the CitySim drone dataset.
已发表:AAP期刊 Published: AAP Journal
由于高效率要求,实时大规模冲突估计仍然是一个挑战。我们提出了一种利用深度学习模型进行实时冲突检测的新方法。 Real-time large-scale conflict estimation is still a challenge due to high efficiency requirements. We propose a novel approach leveraging deep learning models for real-time conflict detection.
状态:审核中 Status: Under review
本研究基于无人机轨迹数据集,调查了晴天和轻雨天气条件下不同替代安全措施的具体阈值。 This study investigates specific thresholds for different surrogate safety measures under clear and light rainy weather conditions based on drone trajectory dataset.
已发表:TRR期刊 Published: TRR Journal
如果您有任何问题或机会,请随时与我联系。 Any questions or job opportunities, please feel free to contact me.